Glenn Research Center

Tutorial Case

Solution Process

This tutorial is documented in full in the WIND User's Guide:

www.grc.nasa.gov/www/winddocs/user/tutorial.html

Solution Process:

- 1. Gather Information
- 2. Create the Computational Grid
- 3. Set the Boundary Conditions
- 4. Set the Initial Conditions
- 5. Set the Program Control Parameters
- 6. Run WIND
- 7. Monitor the Convergence
- 8. Examine the Results

Gather Information

- Subsonic internal flow in a diverging duct.
- Want to know the static pressure distribution and mass flow rate within 10%.
- Inlet flow conditions: M = 0.78, $p_t = 15$ psi, $T_t = 600$ °R.
- Reynolds number $Re = 3.023 \times 10^5$.
- Exit static pressure p = 14.13 psi.

Create the Computational Grid

Test case grid

- 3 zones: 17×6 , 33×11 , 17×11 .
- Grid created algebraically and written in PLOT3D xyz format.
- Converted to a Common Grid (case4.cgd) file using CFCNVT.

Set the Boundary Conditions

• GMAN is used in graphical mode to set boundary condition types:

Subsonic Inflow: Arbitrary Inflow BC

Subsonic Outflow: Outflow BC

Walls: Inviscid Walls BC

- Zone interfaces identified automatically and coupling information was written to the Common Grid (case4.cgd) file.
- Further boundary condition inputs were specified in the Input Data file (case4.dat).

Set the Initial Conditions

Create the initial flow field as a uniform flow using the freestream conditions as set by the freestream keyword in the input data file (case4.dat).

Set the Program Control Parameters

Initial flow field set by freestream: Mach, p (psi), T (deg R), alpha, beta

Exit static pressure (psi)

Physical Model Controls:

- Dimensionality (3D, 2D, axisymmetric)

- Flow Equations (Euler, PNS, thin-layer NS, RANS)
- Turbulence Model
- Gas Model & Chemistry

Numerical Model Controls

- Time Stepping
- Explicit and Implicit Numerical Operators
- Damping Scheme
- Convergence Acceleration
- Convergence Monitoring Parameters

Monitor convergence by computing the mass flow at entrance and exit planes.

```
WIND test case #4, 2-D, 3 zones
Subsonic internal flow
Run 1
/ Inlet conditions
Freestream total 0.78 15. 600. 0. 0.
/ Boundary conditions
Downstream pressure 14.13 zone 3
/ Numerics
                          Run 1000 cycles
Cycles 1000
/ Viscous terms
Turbulence euler
                            Solve inviscid
                            equations
/ Convergence data
Loads
   print planes frequency 5
   zone 1
      surface i 1 mass
   zone 2
      surface i 1 mass
   zone 3
      surface i 1
                   mass
      surface i last mass
Endloads
End
```


Run WIND

Run Wind-US using the WIND script.

wind -runinplace

- Specify use of Wind-US 2.0
- Specify name of input data file prefix, case4.
- Run interactively.
- Default names for solution, grid, and output files.
- Initial flow solution created.
- List Output to a file, case4.lis.

```
> wind -runinplace
Running command line version of WIND.
                ***** WIND Run Script *****
Current wind settings are:
--Wind test mode set to NODEBUG
--Wind debugger set to DEFAULT
--Wind run que set to PROMPT
--Wind run in place mode is set to YES
--Wind multi-processor mode set to NO
--Wind run directory set to PROMPT
--Wind bin directory set to /net/zargon/usr2/wind/wind
               Select the desired version
 0: Exit wind
 1: alpha version
 2: Version 2.0
 3: Version 3.0
 4: Version 4.0
 5: Version 5.0
Enter number or name of executable.....[5]: 5
Basic input data.....(*.dat): case4
Output data.....(*.lis, <CR>=case4):
Mesh file.....(*.cgd, (CR)=case4):
Flow data file.....(*.cfl, (CR)=case4):
************************
case4.cfl does not exist, a fresh start will be performed.
***********
Enter a queue number from the following list or <CR> for default:
 1: REAL (interactive)
 2: AT_QUE
Queue name.....((CR) for 1): 1
Print output at screen?.....(y/n, \langle cr \rangle = y): n
Version..... wind5.exe
Input file name....: case4.dat
Wind output to....: case4.lis
Grid file name....: case4.cqd
Flow file name.....: case4.cfl
Job run que type is...: REAL
```


Monitor the Convergence

- RESPLT used to extract residuals and mass flow from List Output file (case4.lis) and to create a GENPLOT file.
- CFPOST can be used to plot the GENPLOT files containing convergence data.

Examine the Results

- Computed results stored in the Common Flow (case4.cfl) file.
- Results processed using CFPOST.

